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Abstract—Debugging is often underemphasized or omitted
in computer science curricula despite being a critical skill for
success in the software development industry. This paper
surveys five key studies regarding the process of debugging,
how the skill has been taught throughout time, and how
generative Al serves as a platform to advance its teaching.
Through this analysis, a comprehensive perspective on the
reasons why the skill is difficult to teach is developed. It is
stated that careful guardrails and foresight must accompany
this new technology to ensure that increased independence
rather than over reliance is the outcome of its application to
education. Finally, future research is proposed and the
increasing importance of debugging skills in a world infiltrated
by Al-generated code is discussed.
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I INTRODUCTION

Software developers must be proficient in two distinct
skills — programming and debugging [1]. Though these
skills are often considered indistinguishable, they require
distinct mental models and knowledge bases and are
unequally emphasized in computer science curricula [1].
The latter is often marginalized or entirely omitted from
formal instruction despite its vitality for industry success
[2]. This can be largely attributed to collective instructor
sentiment that teaching debugging is challenging, overly
time-consuming, or unscalable [1].

Despite this, the literature has conducted studies
examining the teaching of debugging and the viability of
doing so throughout time. Unsurprisingly, as software
development methodologies and instructional technologies
have changed, likewise have the debugging techniques used
[1]. As expected, some of the greatest changes were
observed when students gained access to computers and
independent development tools [1-2]. This paper argues that
another monumental shift in debugging strategies is
imminent due to the advent of generative Al.

Over the last 5 years, the explosion of generative Al and
large language models (LLMs) has triggered a paradigm
shift in software development practices and debugging
strategies for professional software engineers, computer
science students, and computer science instructors alike
[3-4]. Whereas some view and utilize these tools as a
detriment to problem solving and mental model
development, they can also be used as a tool to strengthen
debugging skills [3]. From generating debugging exercises
with human-like mistakes to explaining test coverage,
current research is investigating the use of LLMs to prepare
the next generation of debuggers for a world in which
generative Al aids in generating code at an unprecedented
pace [4].
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Through a comprehensive analysis of debugging and its
teachability throughout time, this paper develops a
comprehensive perspective on the reasons why the skill has
been difficult to teach in the past. In addition, the use of
generative Al to advance instructional debugging is
examined and guardrails are proposed to promote positive
outcomes from the application of this technology to the
field. Finally, this paper suggests future research topics and
the increasing importance of debugging skills given the
quantity and characteristics of Al-generated code.

II. SUMMARY

An Analysis of Debugging and its Independence from
Programming

In order to understand why debugging is difficult to
teach, the skill must first be precisely broken down and
analyzed. Several studies have not only analyzed debugging,
but also differentiated debugging techniques in novices and
experts.

Many with longstanding software development
experience or employment fail to decouple the skills of
programming and debugging, instead referring to them
collectively as the task of software development or even
“programming.” However, these skills are entirely
independent — whereas programming is creative,
debugging is reactive [1]. Though both are integral parts of
the day-to-day tasks of a software developer, these two
skills require entirely separate mental models and strategies

[1].

In addition to their importance for industry success,
studies have shown that possessing mature debugging skills
has significant non-cognitive importance. Researchers note
the fine line between beneficial and harmful persistence and
how knowing this line can aid in preventing frustration and
increase self-efficacy [2]. Whereas some persistence is
inherently necessary to troubleshoot the unknown source of
a bug or malfunction of a program, continuously fidgeting
with a piece of code with no forward progress can be
unproductive and discouraging, especially for novices [1-2].

One of the factors contributing to the difficulty of
teaching debugging is its complexity. In addition to being
heavily dependent on project context, most researchers
agree that the task has three phases — creating bugs, finding
bugs, and fixing bugs [1]. As a result, studies have targeted
one or more of these phases at different times. The ability to
find bugs and the ability to then resolve them are not
necessarily correlated skills and may develop unequally in
different individuals [1, 5].



Furthermore, targeting bug creation is inherently
complex given that software errors can be expanded into
three distinct subtypes [2]. Syntax bugs, which manifest at
compile-time (or even when a program is linted in some
modern IDEs) are expressed as language-dependent error
messages of varying interpretability [1]. Semantic bugs
manifest at run-time, often resulting in cryptic error
messages or unexpected crashes which require external tools
to analyze [2]. Finally, logical bugs, the most broad and
difficult to debug subtype, do not cause a program to fail
compilation or execution but instead result in unexpected
output [1].

One study attributes these distinct practical bug
manifestations to a single abstract “superbug,” or gaps in the
mental approaches of novice debuggers [1]. Arguing that
most novice issues are systemic and transcend language or
environment-specific constructs, [1] notes that many
novices created bugs as a result of their flawed expectation
that a computer or compiler “understands” human intentions
regardless of implementation issues [1].

Some studies have also sought to compare debugging
strategies in novices and experts, noting significant
differences. One such study employed a unique visual
interface only allowing users to reveal a small portion of the
program they were debugging at a time. The results of this
experiment accentuated differences in the breadth of
searches employed by the two groups, with experts being
more likely to analyze the broader program and the buggy
code snippet in context [1]. Additionally, studies find that
one reason expert debuggers have an extra advantage is that
they can apply prior debugging experience and heuristic/
pattern-matching techniques [1]. Some studies even found
that whereas experts often addressed the root cause of the
issue without changing unnecessary portions of the
program, novices were more likely to introduce additional
bugs and modify working code when debugging [5].

In summary, this analysis demonstrates the difference
between debugging and programming, meriting their
consideration and instruction as distinct skills. While
programming is a creative task often influenced by language
and environment constructs, debugging is a universal
abstract reasoning skill essential for all developers. This
distinction, combined with its deep connection to individual
thought processes, lays the groundwork for its instructional
difficulty.

Previous Methodologies of Teaching Debugging and Their
Limitations

Given a comprehensive analysis of debugging as a skill
as well as the types of issues debugging seeks to resolve,
previous studies concerned with the teaching of debugging
can now be examined to analyze its teaching complexity and
the ways in which instructors have attempted to circumvent
instructional barriers.

©2025 Connor Magnuson

Various studies have explored changes in debugging
performance when novices are given feedback in various
forms provided at different times throughout the
compilation and execution process. Various media for such
feedback include but are not limited to (un)enhanced
compiler warnings, instructor comments, and personal
teaching assistant support [1]. These feedback forms have
been varied both independent of and dependent upon bug
type, revealing that personalized feedback contributes most
directly to increased learning [2]. However, instructors
cannot practically provide personalized feedback in a large
course setting, leading to the absence of debugging in
curricula.

When studies have changed feedback timing
independent of bug type (ex. providing compile-time errors
for semantic bugs), one study revealed that “while
immediate feedback improves short-term performance,
delayed feedback is more effective for long-term conceptual
retention” [2]. This does not take into account, however, the
non-cognitive tradeoffs of these approaches, which are
likely to favor sooner feedback for novices.

Several studies have shown that the ability to converse
with others (even of the same skill level) while debugging
can dramatically increase performance [2]. Studies attribute
this to benefits of cognitive load-sharing and the deeper
comprehension gained through verbal discussion [2]. This
suggests that although instructors are incapable of providing
personalized feedback to all students, assembling students
into small groups when learning debugging may allow
students to reap some foregone benefits. There are also
downsides to this approach, however, such as matching
students with different debugging skill levels. This may lead
to one student being unsympathetic of other students’
concerns or confusions, or may silence otherwise beneficial
questions from less-experienced students.

One often underemphasized debugging aid is the
creation of unit testing suites. Studies have found that when
given the option, novices do not prioritize test creation,
highlighting a potential lack of emphasis in curricula [5].
When provided some test cases in a debugging environment,
students were extremely unlikely to create additional test
cases [2, 5]. This is not only concerning for the purpose of
developing skills, but also given that developing test suites
is often a task of developers in industry and something that
degree graduates should be capable of.

Discouragingly, almost all such traditional studies found
that students were unlikely to directly apply the debugging
skills they developed through specifically targeted exercises
to future coursework [1]. However, studies found that
requiring students to reflect on their mistakes and strategies
or abstract them away from code improved this metric and
encouraged retention [2].

The complex and/or personalized methodologies which
cultivated improved novice debugging performance in these
studies highlight the major practical tradeoff between
quality and scalability that has served as an inhibitor for the
skill’s instruction over time. However, generative Al now
serves as a tool which can achieve both personalized,
quality debugging instruction and practical scalability.



Debugging in the Age of Generative Al

While some view Large Language Models as
detrimental to the software development industry, they can
instead be used as a tool to teach debugging like never
before and prepare developers to debug Al-generated
software.

It has been shown that the long-term benefit or detriment
to users of Al in the context of programming is largely
determined by the type of prompting employed [3]. Lazy
prompts such as “fix this code” or “make it work” followed
by a large code snippet serve to offload cognitive work and
critical thinking, thereby eradicating the critical problem-
solving experiences necessary for a developer to become a
good debugger [3-4]. On the other hand, productive prompts
such as weighing design tradeoffs or analyzing
vulnerabilities for a given section of code can help
developers expand their knowledge base and debugging
skills at an unprecedented pace [3-4].

Assembled carefully, large language models can act as
chatbot pair programmers of equivalent caliber to the
prompter, bringing about all of the benefits of pair
programming discussed in the prior section [3].
Additionally, chatbots can be trained to respond in specific
ways and within specific limits set by course staff, providing
similar services to a TA or professor [3]. One such chatbot
developed for Harvard’s CS50 introductory programming
course was made available to students for assignments and
general course questions [3].

Perhaps one of the most intriguing and promising uses of
generative Al to enhance debugging skills is its employment
in the generation of code snippets with human-like bugs, a
natural feature of large language models [4]. One such study
created a tool called HypoCompass wherein Al models were
used to generate buggy code snippets and novices played the
role of an instructor or course assistant, helping the Al
“students” debug their issues and justifying the reasoning
for their decisions [4]. Students reinforce concepts and
heuristics that improve debugging skills and speed when
they must teach someone (or something) else their
methodologies [4].

Rather than simply wrapping a popular LLM-based
chatbot with prompts to generate code, the HypoCompass
study used far more complex architecture and provides a
glimpse into the kind of thinking required when employing
generative Al in the field of instructional debugging. After
proposed code samples were generated, they were filtered
and evaluated by both Al and humans before being
presented to participants [4]. Users also had to explain their
reasoning to the “student” chatbot when attempting to
debug, and careful guardrails were imparted upon this
chatbot to ensure it asked the right type of clarifying
questions and did not give solutions to the user [4].
Researchers analyzed not only the success of students in
proposing correct bug fixes, but also explanations and
reasoning [4]. This study provides one such example of how
generative Al can be employed to improve the effectiveness
and feasibility of instructional debugging.
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Another promising use of generative Al models is aiding
in the creation of increasingly comprehensive test suites.
Models are not only good at determining untested
vulnerabilities and generating corresponding test coverage,
but also analyzing patterns in failed test cases and
backtracking to problems in the source code [3-4]. When
integrated into novice tools, this can reduce the burden of
creating test cases, thereby aiding students in debugging and
reducing frustration.

I11. CONCLUSIONS

Though debugging is a skill critical for success in the
software development industry, computer science curricula
has often focused primarily on the distinct skill of
programming due to the difficulty of teaching debugging to
students [1]. Numerous studies reinforce the fact that past
approaches have been limited by instructor time and a lack
of personalization — in large course settings, instructors and
even teaching assistants often cannot take time to interact
with every student individually and guide them through
developing a mental framework for debugging [1-2].

Now, generative Al and LLMs present a never-before-
seen opportunity for personalized debugging instruction and
early studies show that they can be highly effective for both
the teaching and retaining of debugging skills if employed
carefully [4]. Paralleling their benefits and drawbacks when
applied to many disciplines, this same technology can serve
to either dramatically improve skills or circumvent learning
depending on how it is utilized [3].

Caution must be taken to ensure that students use Al in
productive and beneficial ways so that they gain valuable
skills rather than offload mental workload. When Al acts as
a personal instructor rather than an answer key search
engine, it can help students develop deep foundations for
debugging. The ability to debug is a more important skill
than ever before as LLMs continue to permeate codebases
with an unprecedented quantity of code riddled with human-
like mistakes [4].

It is clear that further studies and experiments analyzing
the benefits of applying generative Al to debugging
instruction and the provisions required to ensure these
benefits are obtained are in order. Additionally, research on
the retention of debugging skills after using AI chatbots
should be conducted to ensure valuable independent skills,
rather than tool reliance, is the outcome [2]. Even if chatbots
are trained to respond exactly as a course professor or TA
would, it must be proven that this unfettered access does not
result in over reliance [3-4].
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	Conclusions
	Though debugging is a skill critical for success in the software development industry, computer science curricula has often focused primarily on the distinct skill of programming due to the difficulty of teaching debugging to students [1]. Numerous studies reinforce the fact that past approaches have been limited by instructor time and a lack of personalization — in large course settings, instructors and even teaching assistants often cannot take time to interact with every student individually and guide them through developing a mental framework for debugging [1-2].
	Now, generative AI and LLMs present a never-before-seen opportunity for personalized debugging instruction and early studies show that they can be highly effective for both the teaching and retaining of debugging skills if employed carefully [4]. Paralleling their benefits and drawbacks when applied to many disciplines, this same technology can serve to either dramatically improve skills or circumvent learning depending on how it is utilized [3].
	Caution must be taken to ensure that students use AI in productive and beneficial ways so that they gain valuable skills rather than offload mental workload. When AI acts as a personal instructor rather than an answer key search engine, it can help students develop deep foundations for debugging. The ability to debug is a more important skill than ever before as LLMs continue to permeate codebases with an unprecedented quantity of code riddled with human-like mistakes [4].
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